La filiére thorium.

Répondre


Cette question vous permet de vous prémunir contre les soumissions automatisées et intensives effectuées par des robots malveillants.
Émoticônes
:D :geek: :ugeek: :ghost: :wtf: :-D :) :-) :-( :-o :shock: :? 8-) :lol: :-x :-P :oops: :cry: :evil: :twisted: :roll: ;) ;-) :!: :?: :idea: :arrow: :-| :mrgreen: =D> #-o =P~ :^o [-X [-o< 8-[ [-( :-k ](*,) :-" O:) =; :-& :-({|= :-$ :-s \:D/ :-#
Plus d’émoticônes

Le BBCode est activé
La balise [img] est activée
La balise [flash] est activée
La balise [url] est activée
Les émoticônes sont activées

Relecture du sujet
   

Agrandir Relecture du sujet : La filiére thorium.

Re: La filiére thorium.

par energy_isere » 26 août 2023, 11:32

et plus récemment sur le sujet :
Preparations begin for thorium-HALEU fuel regulatory review

15 February 2023

Clean Core Thorium Energy and the Canadian Nuclear Safety Commission (CNSC) have begun the planning phase of a pre-licensing review of Clean Core's ANEEL thorium and high-assay low-enriched uranium (HALEU) fuel, the company has announced.

The Chicago-based fuel innovation company is developing ANEEL fuel - the name is taken from Advanced Nuclear Energy for Enriched Life - for use in pressurised heavy water and Candu reactors. High-burnup irradiation testing and qualification of the fuel is currently under way at the Advanced Test Reactor at the US Department of Energy's Idaho National Laboratory (INL), using test pellets manufactured by the company in partnership with Texas A&M University and INL. The company is also collaborating with US company Centrus as a supplier of HALEU.

The high-burnup advanced fuel can improve the accident tolerance characteristics and economics of heavy water reactors while reducing the amount of waste generated by as much as 87.5%, the company says, and is proliferation-resistant.

The CNSC’s pre-licensing review process will provide "clear and early feedback" on the use of the fuel design in a CANDU reactor, Clean Core said. CNSC staff will conduct an assessment of the proposed fuel design and qualification programme to confirm that Clean Core will be capable of demonstrating it can meet the regulator's expectations, applicable regulatory documents and applicable Canadian codes and standards. The company said it is "confident" that the safety case it is putting together "is solid, and will be shown to meet CNSC’s requirements and expectations".

"The initiation of the CNSC pre-licensing process marks a significant leap towards unlocking ground-breaking performance with heavy water reactors by utilising thorium and HALEU," Clean Core CEO Mehul Shah said. "Once approved for use in Canada, ANEEL Fuel will make CANDU reactors safer, cleaner, and cost effective, while supporting Canada's long-term clean energy goals. Future use by a Canadian licensee also sends a clear signal to current and potential users of heavy water reactors who could benefit from cheaper carbon-free nuclear power that mitigates the concerns of weapons proliferation and waste disposal."
https://world-nuclear-news.org/Articles ... l-regulato

Re: La filiére thorium.

par energy_isere » 26 août 2023, 11:22

suite du post au dessus.

Dans le projet ANEEL il ne s'agit pas de construire spécifiquement un réacteur au thorium, mais de réaliser un combustible au Thorium + Uranium qui pourra être utilisé dans les réacteurs existant de type PHWR ou CANDU qui fonctionnent actuellement à l' Uranium.

Il y a eu un gros article dans Forbes en Septembre 2020 que j'avais raté.
Visiblement l'article de oilprice du post au dessus en reprends des éléments.
ANEEL: Thorium-Based Reactor Fuel Could Support A New Wave Of Nuclear Power

James Conca Sep 22, 2020,08:00 Forbes

For decades, nuclear engineers have dreamt up new formulas, shapes and sizes for the radioactive fuel that powers the reactors of the world’s nuclear power plants (our greatest source of zer0-carbon electric power). Today most of what’s used for reactor fuel is enriched uranium. In the future, fuel compositions could shift toward the very promising element thorium.

A potential breakthrough: The United States Department of Energy (DOE) Idaho National Laboratory (INL) and the Nuclear Engineering & Science Center at Texas A&M have partnered with Clean Core Thorium Energy (CCTE) to fabricate a new type of nuclear fuel, called “Advanced Nuclear Energy for Enriched Life”, or ANEEL.

With a proprietary combination of thorium (Th) and uranium (U), particularly “High Assay Low Enriched Uranium” (HALEU), ANEEL fuel can address several issues that have plagued nuclear power – cost, proliferation and waste. Plus, this fuel, being made-in-America, positions it as a prime candidate for export to emerging nuclear markets.

Over the last several years, there has been a growing consensus among climate scientists that nuclear energy is critical for mitigating the worst effects of global warming. Nations and states are shifting from Renewable Energy Mandates to technology-neutral Clean Energy Standards that include nuclear energy.

But in developing nations, the need is urgent. Most do not have the infrastructure to install natural gas, wind or solar. Additionally, many do not have sufficient topography and river flow for hydro. So it’s either coal or nuclear. If you care at all about the environment, then it better be nuclear.

So developing new technologies, especially advanced fuels, is critical for this deployment. The ANEEL fuel can be used in traditional boiling water and pressurized water reactors, but it really shines when used in heavy water reactors, like the CANDU and the PHWR. More importantly, it can be developed and deployed rather quickly.

CCTE plans to go-to-market with this technology by 2024.

"Today, emerging countries and their citizens, ever hungry for the power needed to drive the engines of progress and prosperity, need an abundant and uninterruptible source of clean base-load power. This solution must address multiple key barriers, including cost, efficiency, and sustainability,” says Mehul Shah, CEO and Founder of CCTE. “The urgency of realizing such a vision becomes even more critical as time is lost in the face of an accelerating climate crisis.”

The CANDU And PHWR Reactors

The CANDU (Canada Deuterium Uranium) reactor was developed in the 1950s in Canada, and more recently in India as the PHWR (Pressurized Heavy Water Reactor). These reactors are heavy water cooled and moderated pressurized water reactors.

Image
There are 49 operating PHWR/CANDU reactors in 7 countries including Canada, Argentina, India, and China

PHWRs/CANDUs are well established small and medium reactors (see figure above). All of Canada's 20 nuclear reactors are of the CANDU design. Other nations with CANDU reactors include Argentina, China, India, South Korea, Pakistan, and Romania. India has 18 PHWRs that are based on the CANDU design. The nearly 50 CANDU and PHWR reactors comprise roughly 10% of reactors worldwide.

On the other hand, there are 30 countries considering, planning or starting nuclear programs, and an additional 20 countries, most of which are in developing countries, that have expressed an interest in launching a nuclear program in the future (see figure below). The CANDU/PHWR is an optimal reactor choice for developing nations, when equipped with the right fuel.

CANDU/PHWRs generally use natural uranium (0.7% U-235) oxide as fuel, so they need a more efficient moderator (the material that slows or moderates the speed of the neutron so it hits the next nucleus at the right speed to split, or fission, it). In this case, these reactors use heavy water (D2O). Deuterium is hydrogen with one neutron in its nucleus.

Additionally, thorium has a higher melting point and lower operating temperature which makes it inherently safer than straight U and more resistant to core meltdowns.

The ANEEL fuel has a very high fuel burn-up rate of about 55,000 MWd/T (megawatt-day per ton of fuel) as compared to natural uranium fuel used in currently operating PHWRs/CANDUs with a burn-up of around 7,000 MWd/T. This is important in a few ways.

Higher burn-up means the fuel stays in the reactor longer and gets more energy out of the same amount of fuel. Also, more neutron poisons breed in over the fuel’s use, including Pu-240,241,242 making the spent fuel prohibitively difficult to make into a weapon.

Also, a higher fuel burn-up of ANEEL fuel will reduces the waste by over 80% and ends up with much less plutonium (Pu) because more of the Pu is burned to make energy while making the spent fuel proliferation resistant. Less spent fuel means less refueling, less cost, less fuel handling and less volume to dispose.

In addition, PHWR/CANDU reactors don’t have to be shut down to refuel, and can be refueled at full power. The Kaiga Unit-1 Indian PHWR, and Darlington Unit 1 in Canada, hold the world records for continuous operation at 962 days and 963 days of uninterrupted operation, respectively.

In an existing CANDU/PHWR using natural uranium, each fuel bundle weighs roughly 15 kg. After the first 150 days of operation, an average of eight such bundles would need to be replaced daily for the rest of the reactor’s operating life of 60 years.

With the ANEEL fuel, each fuel bundle weighs approximately 10.65 kg. After the first 1,400 days of operation, an average of only one such bundle would need be replaced daily for the remainder of the reactor’s operating life, leading to significantly less waste.

The Interesting Thing About Thorium

Like most even-numbered heavy isotopes, Th-232 doesn’t fission easily. But like non-fissile U-238 forming Pu-239 through neuron sorption which then fissions to produce energy, Th-232 also absorbs a neutron, then quickly double-beta decays to U-233 which then fissions to produce energy.

Dr. Sean McDeavitt, Nuclear Engineering Professor and Director of the Nuclear Engineering & Science Center at Texas A&M University, notes, “I’ve been actively working on and around nuclear fuel behavior and applications for over 25 years. The ANEEL fuel concept integrated with the existing CANDU/PHWR reactor technology takes advantage of thorium’s superior properties, performance, and abundance to generate clean base-load electricity with reduced environmental impact.”

Texas A&M will fabricate the ANEEL fuel pellets at their Nuclear Engineering and Science Center and deliver them to INL. INL will conduct high burn-up irradiation testing of the ANEEL fuel pellets (up to 70,000 MWd/T) in INL's accelerated test rig at their Advanced Test Reactor. This will be followed by post irradiation examination and fuel qualification, all under the stringent guidelines and quality assurance requirements of the DOE and the NRC.

“We look forward to supporting these efforts to develop advanced nuclear fuels. As the nation’s center for nuclear energy research and development, INL supports industry needs with unique facilities, capabilities and expertise.” – Jess Gehin, Ph.D., INL chief scientist.

Image
Thorium is contained in, and produced from, the natural mineral monazite, occurring often as a sand deposit.

There is well over twice as much Th on earth than U. India itself has more Th than U, particularly as monazite sands, a reason they have been pursuing Th in nuclear reactors for decades.

The GeoPolitical Implications

The advantages of the ANEEL fuel fit several elements in the United States Department of Energy’s recently released Restoring America's Competitive Nuclear Energy Advantage which says nuclear power is intrinsically tied to national security.

Whenever the United States is involved in another country’s nuclear program, that country signs various agreements related to security, weapons nonproliferation and nuclear materials, including nuclear fuel.

Agreements like a 1-2-3 Agreement, and other agreements like those committing the country to forgo domestic uranium enrichment and reprocessing of spent fuel are put in place, as well as signing the International Atomic Energy Agency's Additional Protocol, which institutes more stringent inspection regimes.

To date, the U.S. has entered into roughly twenty-three 1-2-3 Agreements with 48 countries, including the Ukraine, Morocco, Egypt and Taiwan.

But the United States’ nuclear program has atrophied over the last few decades. At the same time, other countries have strengthened, particularly Russia and China, both of whom have state-owned enterprises and are less than caring about security and environmental concerns, as well as others like South Korea whose industry is government-supported in ways that just can’t happen in the United States.

So having a new fuel made in America that can be used in reactors in other countries brings the United States back into play in the nuclear supply chain, and allows us to reach more of the nations around the world.

With current bilateral recognition in the United States that nuclear is necessary for clean base-load energy, CCTE's ANEEL fueled PHWR/CANDU reactors could be deployed to more emerging countries faster by easing concerns of proliferation and waste management.

And maybe we can actually decrease the amount of coal burned.
https://www.forbes.com/sites/jamesconca ... cfbf3714ea

Re: La filiére thorium.

par energy_isere » 26 août 2023, 11:06

Il y a un projet de Thorium aux USA , le projet ANEEL :
by Alex Kimani - Aug 25, 2023 oilprice.com

...................
Thorium is now being billed as the 'great green hope' of clean energy production that produces less waste and more energy than uranium, is meltdown-proof, has no weapons-grade by-products and can even consume legacy plutonium stockpiles.

The United States Department of Energy (DOE), Nuclear Engineering & Science Center at Texas A&M and the Idaho National Laboratory (INL) have partnered with Chicago-based Clean Core Thorium Energy (CCTE) to develop a new thorium-based nuclear fuel they have dubbed ANEEL. ANEEL (Advanced Nuclear Energy for Enriched Life) is a proprietary combination of thorium and “High Assay Low Enriched Uranium” (HALEU) that intends to address high costs and toxic waste issues (thorium must be paired with at least a small amount of a fissile material due its inability to naturally fissile on its own). The main difference between ANEEL and the uranium that is currently used in U.S. reactors is the level of uranium enrichment. Instead of up to 5% uranium-235 enrichment, the new generation of reactors need fuel with up to 20 percent enrichment. Several years ago, CCTE started fitting existing reactor designs to enable them to use ANEEL fuel, which the company projected could enter commercial use as early as 2024. Meanwhile,two years ago, the U.S. Nuclear Regulatory Commission (NRC) approved Centrus Energy’s request to make HALEU at its enrichment facility in Piketon, Ohio, becoming the only plant in the country to do so. However, more could be on the way if the new fuel proves to be a success.

While ANEEL performs best in heavy water reactors, it can also be used in traditional boiling water and pressurized water reactors. More importantly, ANEEL reactors can be deployed much faster than uranium reactors.

Another key benefit of ANEEL over uranium is that it can achieve a much higher fuel burn-up rate of in the order of 55,000 MWd/T (megawatt-day per ton of fuel) compared to 7,000 MWd/T for natural uranium fuel used in pressurized water reactors. This allows the fuel to remain in the reactors for much longer meaning much longer intervals between shut downs for refueling. For instance, India’s Kaiga Unit-1 and Canada’s Darlington PHWR Unit hold the world record for uninterrupted operations at 962 days and 963 days, respectively.

The thorium-based fuel also comes with other key benefits. One of the biggest is that a much higher fuel burn-up reduces plutonium waste by more than 80%. Plutonium has a shorter half-life of about 24,000 years compared to Uranium-235’s half-life of just over 700 million years. Plutonium is highly toxic even in small doses, leading to radiation illness, cancer and often to death. Further, thorium has a lower operating temperature and a higher melting point than natural uranium, making it inherently safer and more resistant to core meltdowns.
https://oilprice.com/Alternative-Energy ... -Hold.html

Re: La filiére thorium.

par energy_isere » 17 juin 2023, 12:00

suite de ce post du 24 sept 2022 viewtopic.php?p=2353444#p2353444
Operating permit issued for Chinese molten salt reactor
15 June 2023

The Shanghai Institute of Applied Physics (SINAP) of the Chinese Academy of Sciences has been granted an operating licence for the experimental TMSR-LF1 thorium-powered molten-salt reactor, construction of which started in Wuwei city, Gansu province, in September 2018.

"The thorium-fueled molten salt experimental reactor operation application and related technical documents were reviewed, and it was considered that the application met the relevant safety requirements, and it was decided to issue the 2 MWt liquid fuel thorium-based molten salt experimental reactor an operating licence," the National Nuclear Security Administration (NNSA) said in a 7 June statement.

The NNSA noted that, when operating TMSR-LF1, SINAP "should adhere to the principle of 'safety first', abide by the regulations of the operating licence and permit conditions, and ensure the safe operation" of the reactor.

Construction of the TMSR-LF1 reactor began in September 2018 and was scheduled to be completed in 2024. However, it was reportedly completed in August 2021 after work was accelerated.

In August last year, SINAP was given approval by the Ministry of Ecology and Environment to commission the reactor.

The TMSR-LF1 will use fuel enriched to under 20% U-235, have a thorium inventory of about 50 kg and conversion ratio of about 0.1. A fertile blanket of lithium-beryllium fluoride (FLiBe) with 99.95% Li-7 will be used, and fuel as UF4.

If the TMSR-LF1 proves successful, China plans to build a reactor with a capacity of 373 MWt by 2030.
https://www.world-nuclear-news.org/Arti ... en-salt-re

Re: La filiére thorium.

par energy_isere » 20 mai 2023, 15:53

SMRs considered for Indonesian fertiliser plant
19 May 2023

A collaboration between Danish and Indonesian companies will study the operational and regulatory conditions for constructing an ammonia production facility in Indonesia powered by Copenhagen Atomics' small and modular thorium molten salt reactors.

.................
The nuclear power plant part of the project will comprise of 25 SMR modules proving a total of 1 GW.
...............
https://www.world-nuclear-news.org/Arti ... iser-plant

sur le site de Copenhagen Atomics https://www.copenhagenatomics.com/technology/

Re: La filiére thorium.

par energy_isere » 13 mai 2023, 13:54

À long terme, quel rôle pourrait jouer le thorium dans le nucléaire ?

Artem Vlasov, Bureau de l’information et de la communication de l’AIEA 19/04/2023

Plus répandu et plus efficace que l’uranium, principal combustible nucléaire, le thorium pourrait constituer une solution de substitution. Mais son utilisation pour la production d’énergie se heurte à des obstacles.

Qu’est-ce que le thorium ?

Le thorium est un métal argenté, peu radioactif, que l’on trouve souvent dans les roches ignées et les sables à minéraux lourds. Son nom proviendrait de « Thor », dieu du tonnerre dans la mythologie nordique. Il est trois à quatre fois plus présent dans notre environnement que l’uranium, mais peu utilisé dans l’industrie ou pour la production d’électricité, notamment parce qu’il ne s’agit pas d’un combustible nucléaire proprement dit, mais d’un élément permettant d’en créer.

Le thorium 232, unique isotope naturel du thorium, est une matière fissionnable mais non fissile. En d’autres termes, il a besoin de neutrons de haute énergie pour provoquer une fission, scission de noyaux atomiques qui libère de l’énergie utilisée pour produire de l’électricité. Mais lorsqu’il est irradié, le thorium 232 est soumis à plusieurs réactions nucléaires et finit par produire de l’uranium 233, une matière fissile qui peut servir de combustible dans les réacteurs nucléaires.

Quels sont les avantages du thorium ?

Le thorium présente plusieurs avantages par rapport au combustible nucléaire classique, l’uranium 235. Il peut générer plus de matière fissile (uranium 233) qu’il n’en consomme, pour alimenter les réacteurs refroidis par eau ou à sels fondus. Selon certaines études, la couche supérieure de la croûte terrestre compte en moyenne 10,5 parties par million (ppm) de thorium, contre 3 ppm d’uranium. « Du fait de son abondance et de sa capacité à produire des matières fissiles, le thorium pourrait offrir une solution à long terme pour répondre aux besoins énergétiques mondiaux », explique Kailash Agarwal, spécialiste des installations du cycle du combustible nucléaire à l’AIEA. En outre, même si aucun réacteur nucléaire n’émet de gaz à effet de serre lorsqu’il est en service, les réacteurs alimentés au thorium pourraient être nettement plus respectueux de l’environnement que ceux alimentés à l’uranium, car ils génèrent moins de déchets nucléaires à longue période.

Obstacles à l’utilisation du thorium

Plusieurs obstacles économiques et techniques subsistent néanmoins. Bien qu’abondant, le thorium présente un coût d’extraction élevé.

« La monazite est l’une des principales sources de terres rares, mais également de thorium », explique Mark Mihalasky, spécialiste des ressources en uranium à l’AIEA. « Si l’on n’avait pas besoin de terres rares, la monazite ne serait pas exploitée pour sa seule teneur en thorium. Le thorium est un sous-produit et son extraction est plus coûteuse que celle de l’uranium. En l’état actuel des choses, il est moins rentable d’extraire du thorium que de l’uranium. Mais cela pourrait changer si la demande en thorium et son utilisation dans l’électronucléaire venaient à augmenter. »

La recherche-développement et les essais concernant les installations nucléaires alimentées au thorium sont tout aussi onéreux, à la fois par manque d’expérience de cet élément et parce que l’uranium a toujours prévalu dans la filière électronucléaire. « La manipulation du thorium peut s’avérer complexe, ce qui ajoute encore une difficulté », indique Anzhelika Khaperskaia, responsable technique de l’ingénierie du combustible et des installations du cycle du combustible à l’AIEA. Le thorium étant une matière fertile et non fissile, il lui faut un catalyseur, comme l’uranium ou le plutonium, pour déclencher et entretenir la réaction en chaîne.

« Nous cherchons de nouvelles technologies énergétiques durables et fiables pour répondre à la demande énergétique croissante et atteindre les objectifs climatiques mondiaux. Le thorium pourrait être une solution », conclut Clément Hill, chef de la Section du cycle du combustible nucléaire et des matières nucléaires de l’AIEA. « Nous poursuivrons nos recherches pour fournir des résultats scientifiques crédibles aux entités qui s’intéressent au thorium. »

En savoir plus sur les obstacles à l’utilisation du thorium

Dans son nouveau rapport intitulé Near Term and Promising Long Term Options for the Deployment of Thorium Based Nuclear Energy, l’AIEA explique en détail les résultats du projet de recherche coordonnée quadriennal qu’elle a mené sur les possibilités de production d’énergie nucléaire à partir du thorium. Elle présente les avantages et les défis de l’utilisation du thorium comme combustible dans différents types de réacteurs, tels que les réacteurs refroidis par eau les plus courants et les réacteurs à sels fondus.

« Plusieurs pays considèrent le thorium comme une option viable et intéressante pour produire de l’électricité et répondre à leurs besoins énergétiques croissants », indique M. Agarwal, l’un des auteurs du rapport. « Dans le cadre de notre projet de recherche nous avons recueilli auprès des laboratoires nationaux et des instituts de recherche de précieuses connaissances et expériences sur l’utilisation du thorium. Nous les avons rassemblées dans ce rapport. »
https://www.iaea.org/fr/newscenter/news ... -nucleaire

Re: La filiére thorium.

par energy_isere » 13 mai 2023, 13:49

Forget Fusion: We have Thorium for Unlimited Energy video 10 mn https://www.youtube.com/watch?v=AqYdPhv-T30

AtomicBlender
13,4 k abonnés
2 005 680 vues 15 janv. 2023
Start a conversation about Thorium! Check out this coffee mug: https://atomic-blender.com/products/a...
The father of the hydrogen bomb said thorium was the nuclear fuel of the future; yet it was abandoned for the uranium nuclear power plants we see today. Did we make a mistake by ignoring a cleaner, potentially unlimited source of nuclear energy with thorium? Or were its challenges too difficult to overcome? Several companies are betting big on thorium coming to take uranium’s crown in nuclear power.

Why cost isn't everything? Explained in Small Modular Reactors (SMRs) video:


• Can Small Reactor...

00:00 Intro
00:21 What is Thorium
02:05 What went Wrong
04:51 Thorium Resurgence
08:04 Thorium Pros
09:18 Thorium Cons
10:19 Conclusion

Re: La filiére thorium.

par energy_isere » 24 sept. 2022, 15:13

suite de 2 posts au dessus.

Le réacteur expérimental au Thorium de la Chinese Academy of Sciences de Shanghai va pouvoir démarrer :
Chinese molten-salt reactor cleared for start up

09 August 2022

The Shanghai Institute of Applied Physics (SINAP) - part of the Chinese Academy of Sciences (CAS) - has been given approval by the Ministry of Ecology and Environment to commission an experimental thorium-powered molten-salt reactor, construction of which started in Wuwei city, Gansu province, in September 2018.

Image
A cutaway of the TMSR-LF1 reactor (Image: SINAP)

In January 2011, CAS launched a CNY3 billion (USD444 million) R&D programme on liquid fluoride thorium reactors (LFTRs), known there as the thorium-breeding molten-salt reactor (Th-MSR or TMSR), and claimed to have the world's largest national effort on it, hoping to obtain full intellectual property rights on the technology. This is also known as the fluoride salt-cooled high-temperature reactor (FHR). The TMSR Centre at SINAP at Jiading, Shanghai, is responsible.

Construction of the 2 MWt TMSR-LF1 reactor began in September 2018 and was reportedly completed in August 2021. The prototype was scheduled to be completed in 2024, but work was accelerated.

"According to the relevant provisions of the Nuclear Safety Law of the People's Republic of China and the Regulations of the People's Republic of China on the Safety Supervision and Administration of Civilian Nuclear Facilities, our bureau has conducted a technical review of the application documents you submitted, and believes that your 2 MWt liquid fuel thorium-based molten salt experimental reactor commissioning plan (Version V1.3) is acceptable and is hereby approved," the Ministry of Ecology and Environment told SINAP on 2 August.

It added: "During the commissioning process of your 2 MWt liquid fuel thorium-based molten salt experimental reactor, you should strictly implement this plan to ensure the effectiveness of the implementation of the plan and ensure the safety and quality of debugging. If any major abnormality occurs during the commissioning process, it should be reported to our bureau and the Northwest Nuclear and Radiation Safety Supervision Station in time."

The TMSR-LF1 will use fuel enriched to under 20% U-235, have a thorium inventory of about 50 kg and conversion ratio of about 0.1. A fertile blanket of lithium-beryllium fluoride (FLiBe) with 99.95% Li-7 will be used, and fuel as UF4.

The project is expected to start on a batch basis with some online refuelling and removal of gaseous fission products, but discharging all fuel salt after 5-8 years for reprocessing and separation of fission products and minor actinides for storage. It will proceed to a continuous process of recycling salt, uranium and thorium, with online separation of fission products and minor actinides. The reactor will work up from about 20% thorium fission to about 80%.

If the TMSR-LF1 proves successful, China plans to build a reactor with a capacity of 373 MWt by 2030.

As this type of reactor does not require water for cooling, it will be able to operate in desert regions. The Chinese government has plans to build more across the sparsely populated deserts and plains of western China, complementing wind and solar plants and reducing China's reliance on coal-fired power stations. The reactor may also be built outside China in Belt and Road Initiative nations.

The liquid fuel design is descended from the 1960s Molten-Salt Reactor Experiment at Oak Ridge National Laboratory in the USA.
https://www.world-nuclear-news.org/Arti ... r-start-up

Re: La filiére thorium.

par Jeudi » 12 août 2022, 19:17

Glycogène a écrit :
11 sept. 2021, 10:21
il faut bien une source froide finale. Si ce n'est pas de l'eau en circuit ouvert, je me demande bien ce que ça peut être
Compared with wet cooling, dry cooling typically has higher operating and capital costs, requires more land, and decreases plant performance. However, dry cooling adds plant siting flexibility, and becomes cost competitive when water prices are higher than approximately $3-$6/kgal– a distinct likelihood in parts of the US in the future.

https://energy.sandia.gov/programs/nucl ... eneration/

the advances made in dry cooling include solar enhanced natural draft cooling tower; water hybrid cooling and wind break wall hybrid natural draft dry cooling tower

https://www.sciencedirect.com/science/a ... 5163000095

Re: La filiére thorium.

par WizardOfLinn » 10 août 2022, 08:48

https://www.world-nuclear-news.org/Arti ... -start-up

Un réacteur expérimental de 2 MWt à sels fondus de thorium est prêt à démarrer à l'Institut de Physique Appliquée de Shangaï.
La construction avait démarré en 2018 et était prévue pour être terminée en 2024, mais le projet a été accéléré.
Le système inclut une boucle de retraitement et d'extraction en continu des produits de fission gazeux, mais le combustible doit quand même être déchargé et retraité au bout de 5 à 8 ans pour les autres produits de fission et actinides mineurs.
Si cette expérience est satisfaisante, il est prévu de construire un réacteur de 373 MWt d'ici 2030.

Re: La filiére thorium.

par energy_isere » 11 sept. 2021, 10:26

Glycogène a écrit :
11 sept. 2021, 10:21
Ca pipote quand même pas mal pour vendre le bouzin :
Ce type de réacteur ne nécessitant pas d’eau, il pourra fonctionner dans des régions désertiques. L’emplacement du premier réacteur commercial sera dans la ville désertique de Wuwei, et le gouvernement chinois a l’intention d’en construire davantage dans les déserts et les plaines peu peuplés de l’ouest de la Chine
Ouais, ya pas d'eau dans le coeur.
Mais l'électricité est toujours produite par une turbine à vapeur, donc circuit secondaire à eau. On s'en fout un peu, c'est un circuit fermé.
Mais surtout, il faut bien une source froide finale. Si ce n'est pas de l'eau en circuit ouvert, je me demande bien ce que ça peut être (avec de l'air, ça consommerait une bonne part de l'électricité produite pour faire tourner des ventilateurs afin d'avoir un débit d'air suffisant).
Oui, je me suis fait la méme reflexion. Je pige pas.

D'un autre coté dans les centrale solaires à concentration qui stockent le chaud pour le soir et la nuit dans des grosses quantités de sels fondus, comment est ce qu'ils font ?
Ces centrales sont dans des pays chauds comme l' Espagne et des zones trés séche du Chili.

Il y a peut étre moyen de faire du refroidissement à air au lieu d'eau quand on parle de centrale de 50 à 100 MW au lieu de 1000 MW. :-k

Re: La filiére thorium.

par Glycogène » 11 sept. 2021, 10:21

Ca pipote quand même pas mal pour vendre le bouzin :
Ce type de réacteur ne nécessitant pas d’eau, il pourra fonctionner dans des régions désertiques. L’emplacement du premier réacteur commercial sera dans la ville désertique de Wuwei, et le gouvernement chinois a l’intention d’en construire davantage dans les déserts et les plaines peu peuplés de l’ouest de la Chine
Ouais, ya pas d'eau dans le coeur.
Mais l'électricité est toujours produite par une turbine à vapeur, donc circuit secondaire à eau. On s'en fout un peu, c'est un circuit fermé.
Mais surtout, il faut bien une source froide finale. Si ce n'est pas de l'eau en circuit ouvert, je me demande bien ce que ça peut être (avec de l'air, ça consommerait une bonne part de l'électricité produite pour faire tourner des ventilateurs afin d'avoir un débit d'air suffisant).

Re: La filiére thorium.

par energy_isere » 11 sept. 2021, 09:32

C'est ce mois de septembre que la chine doit démarer son petit prototype de 2 MW au Thorium.

Pas de vouvelles pour le moment.
Construction of the experimental thorium reactor in Wuwei, on the outskirts of the Gobi Desert, was due to be completed by the end of August — with trial runs scheduled for this month, according to the government of Gansu province.
https://www.nature.com/articles/d41586-021-02459-w

C'est vraiment un prototype pour apprendre :
China’s reactor will be “a test bed to do a lot of learning”, says Forsberg, from analysing corrosion to characterizing the radionucleotide composition of the mixture as it circulates.

“We are going to learn so much new science,” agrees Simon Middleburgh, a nuclear materials scientist at Bangor University, UK. “If they would let me, I’d be on the first plane there.”

It could take months for China’s reactor to reach full operation. “If anything along the way goes wrong, you can’t continue, and have to stop and start again,” says Middleburgh. For example, the pumps might fail, pipes could corrode or a blockage might occur. Nevertheless, scientists are hopeful of success.

Re: La filiére thorium.

par energy_isere » 11 sept. 2021, 09:31

Image

Fonctionnement d’un réacteur à sel fondu au thorium. © S&V

source : https://trustmyscience.com/chine-souhai ... rium-2030/

Re: La filiére thorium.

par mobar » 28 juil. 2021, 16:09

Le thorium c'est juste un peu plus de temps disponible pour saloper encore plus la planète! ;)

Haut