L'ethanol embauche les bactéries et autres microbes

Modérateurs : Rod, Modérateurs

Flora
Charbon
Charbon
Messages : 205
Inscription : 05 avr. 2011, 11:41

Re: L'ethanol embauche les bactéries et autres microbes

Message par Flora » 07 sept. 2011, 13:34

mahiahi a écrit :Le Panda est sauvé : on va en élever comme bioréacteurs, dans des conditions plus dures encore que celles des poulets de batterie :smt077
Pire encore : comme les pandas se trouvent en Chine, doit-on craindre un sort comparable à celui des ours torturés pour leur bile ????... :smt086 (c'est juste abominable....... :-( )

http://www.aves.asso.fr/article37.html
http://www.30millionsdamis.fr/la-fondat ... -bile.html

Avatar de l’utilisateur
energy_isere
Modérateur
Modérateur
Messages : 60123
Inscription : 24 avr. 2005, 21:26
Localisation : Les JO de 68, c'était la
Contact :

Re: L'ethanol embauche les bactéries et autres microbes

Message par energy_isere » 15 mai 2015, 19:52

Ce sujet ressort !

La société Joule unlimited a levé 40 millions de $ pour avancer son projet pilote à Hobbs (Nouveau Mexique).

Il s' agit de fabriquer de l' ethanol grace à des cyanobactéries (c'est différent des algues) dans des grands bassins aqueux au soleil, alimentés par des nutriments et du CO2 d' origine industriel.

Buh-Bye, Corn Ethanol: Joule Makes The Same Thing From Recycled CO2

May 12th, 2015 by Tina Casey

The biotech company Joule Unlimited has just announced that its unique brand of recycled CO2 ethanol has successfully passed a round of third party testing, bringing it another step closer to commercializing the product in Europe and the U.S. Somewhat coincidentally Joule has just closed a $40 million round of financing, which will enable it to expand its flagship plant in Hobbs, New Mexico to commercial scale. The ultimate goal is to convert 150,000 tons of waste CO2 into 25 million gallons of ethanol per year at that facility. If you’re starting to hear a loud hammering noise, that would be another nail in the coffin of corn ethanol.

Along with our sister site Gas2.org we started following Joule’s solar powered, microbe-assisted recycled CO2 technology in 2009 when the company emerged from “stealth” mode, but we haven’t really checked into it since 2010. Our bad, since a lot’s been happening since then.

Image

Sunlight + Recycled CO2 = Sustainable Ethanol

The basic idea behind recycled CO2 ethanol is to capture waste CO2 from industrial operations and convert it to liquid fuel. If that sounds a little space agey, the U.S. Department of Energy is all over waste gas-to-fuel technology.

Not for nothing, but back in 2010 MIT Technology Review named Joule’s “solar fuel” among its top ten list of “most important emerging technologies.”

Back then, Joule was working on a pilot recycled CO2 plant in Leander, Texas, which illustrates how the “solar fuel” process works.

Here’s how we described the company’s modular, scalable technology:

The heart of the process is the company’s proprietary SolarConverter, which contains photosynthetic organisms in a bath of brackish water and nutrients, with carbon dioxide fed in. While the concept is similar to producing algae biofuel, there are several significant twists. The organisms are not algae, they are bio-engineered proprietary organisms [cyanobacteria] that produce and secrete fuel without the need for costly fermentation processes, extraction or refinement processes. The system also skips the need to collect and transport large quantities of biomass.

The result is an ethanol that can be blended with gasoline, as Joule has just announced. The technology can also be applied to produce petrochemical equivalents leading to diesel, jet fuel, and gasoline among other products.

You can get the nitty gritty details in a 2011 paper titled “A New Dawn for Industrial Photosynthesis” published in the journal Photosynthesis Research. For those of you on the go, here’s couple of snippets from the abstract:

…These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.

In there interests of cost effectiveness, the “free” energy from sunlight is big plus. Also helping things along is the process itself, which is designed as a single step, continuous-throughput system.

Recycled CO2 Ethanol For Your Audi, Anyone?

Specifically, the new recycled CO2 fuel meets the D4806 American Society for Testing and Materials standard for denatured fuel ethanol, and it likewise hits the mark for the EN 15376 German Institute for Standardization.

The certification effort is getting a huge assist from Audi, which has been working on a whole suite of alternative feedstocks to gas up its vehicles (the company is also interested in Joule’s “clean diesel” version of recycled CO2 fuel).

Audi has also been ramping up its electric vehicle efforts, so the company seems to be [wisely] hedging its bets — as much as we love EVs, it looks like liquid fuels are going to be here to stay for the foreseeable future.

A World Awash In Recycled CO2 Fuel

As for Joule’s new $40 million round of financing, puts the company at $200 million for the Hobbs expansion.

The idea is to build in phases, a strategy designed to showcase the scalability of SolarConverter. The company makes an interesting comparison to oil fields:

The catalysts, systems and processes undergoing optimization in Hobbs will form the fully-validated blueprint for future commercial plants, representing an entirely new generation of above-ground fuel wells. At full-scale commercialization, a 10,000 acre Joule plant will represent a reserve value of 50 million barrels of solar-derived fuel, equivalent to a medium-sized oil field.

The size of the full scale plant is a little off-putting in terms of land use, but there is a potential to build on brownfields and other pre-developed sites rather than ripping through ecologically valuable landscape.

According to Joule, more than 1,000 sites have already been identified around the world that could be suitable for SolarConverter development. We’re thinking most of those would be located in and around existing industrial parks, where recycled CO2 is ripe for the picking.

Water resource issues could through a hurdle in the way of site availability, but the system’s reliance on non-potable sources provides it with a good deal of flexibility and opens up the potential for recycling industrial wastewater as well as CO2.
http://cleantechnica.com/2015/05/12/buh ... ycled-co2/

Répondre